

COURSE SPECIFICATIONS (2011-2012)

FACULTY OF ENGINEERING

A-Basic Information

Course Title: Power Electronics (2) **Code**: EP411 **Practical**: Total: 6 Lecture: 4 **Tutorial**: 2 Program on which the course is given: B.Sc. Electrical Engineering (Electrical Power and Machines) Major or minor element of program: N.A. **Department offering the program: Electrical Engineering Department Department offering the course: Electrical Engineering Department** Academic year / level: Fourth Year / First Semester **Date of specifications approval:** 10/5/2006

A. Professional Information

1. Overall aims of course

By the end of the course the students will be able to:

- Understanding the broad classifications of power electronics converters.
- Analyze the AC voltage controller circuits and its applications.
- Understand the cycloconverter circuits and its applications.
- Understand and analyze the DC/DC converter circuits and its applications.

2. Intended Learning outcomes of Course (ILOs)

a. Knowledge and Understanding:

- a.1) Concepts and theories of mathematics and sciences, appropriate to the discipline.
- a.3) Characteristics of engineering materials related to discipline.
- a.4) Principles of design including elements design, process and/or a system related to specific disciplines.
- a.5) Methodologies of solving engineering problems, data collection interpretation.

COURSE SPECIFICATIONS (2011-2012)

FACULTY OF ENGINEERING

b. Intellectual Skills

- b.1) Select appropriate mathematical and computer-based methods for modeling and analyzing problems.
- b.2) Select appropriate solutions for engineering problems based on analytical thinking.
- b.4) Combine, exchange, and assess different ideas, views, and knowledge from a range of sources.
- b.5) Assess and evaluate the characteristics and performance of components, systems and processes.

c. Professional and Practical Skills

- c.1) Apply knowledge of mathematics, science, information technology, design, business context and engineering practice to solve engineering problems.
- c.7) Apply numerical modeling methods to engineering problems.

d. General and Transferable Skills

- d.1) Collaborate effectively within multidisciplinary team.
- d.3) Communicate effectively.
- d.7) Search for information and engage in life-long self learning disciplin

3. Contents

No	Торіс	No. of hours	ILOs	Teaching / learning methods and strategies	Assessment method
				5	
1	Analysis of single-phase	6	a3,a4,a5,b1,b2,	Lectures, Practical training /	Home Assignments,
	AC voltage controllers		c1,c7,d1,d3,d7	laboratory, Class activity, Case	Quizzes, Oral Exam
	_			study, Assignments / homework	
2	Analysis of single-phase	6	a3,a4,a5,b1,b2,	Lectures, Practical training /	Home Assignments,
	AC voltage controllers		c1,c7,d1,d3,d7	laboratory, Class activity, Case	Quizzes, Oral Exam
				study, Assignments / homework	-
3	Analysis of three-phase	6	a3,a4,a5,b1,b2,	Lectures, Practical training /	Home Assignments,
	AC voltage controllers		c1,c7,d1,d3,d7	laboratory, Class activity, Case	Quizzes, Oral Exam

COURSE SPECIFICATIONS (2011-2012)

FACULTY OF ENGINEERING

				study, Assignments / homework	
4	Analysis of three-phase AC voltage controllers	6	a3,a4,a5,b1,b2, c1,c7,d1,d3,d7	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments, Quizzes, Oral Exam
5	Analysis of three-phase AC voltage controllers	6	a3,a4,a5,b1,b2, c1,c7,d1,d3,d7	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments, Quizzes, Oral Exam
6	Analysis of Cycloconverters	6	a3,a4,a5,b1,b2, c1,c7,d1,d3,d7	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments, Quizzes, Oral Exam
7	Analysis of Cycloconverters	6	a3,a4,a5,b1,b2, c1,c7,d1,d3,d7	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments, Quizzes, Oral Exam
8	Mid term exam				
9	DC choppers, step-down choppes	6	a3,a4,a5,b1,b2, c1,c7,d1,d3,d7	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments, Quizzes, Oral Exam
10	Step-up DC choppers	6	a3,a4,a5,b1,b2, c1,c7,d1,d3,d7	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments, Quizzes, Oral Exam
11	Buck DC regulators	6	a3,a4,a5,b1,b2, c1,c7,d1,d3,d7	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments, Quizzes, Oral Exam
12	Boost DC regulators	6	a3,a4,a5,b1,b2, c1,c7,d1,d3,d7	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments, Quizzes, Oral Exam
13	Buck-Boost DC regulators and non-ideal effects	6	a3,a4,a5,b1,b2, c1,c7,d1,d3,d7	Lectures, Practical training / laboratory, Class activity, Case	Home Assignments, Quizzes, Oral Exam

COURSE SPECIFICATIONS (2011-2012)

FACULTY OF ENGINEERING

				study, Assignments / homework	
14	DC chopper circuits: design and applications	6	a4,d1,d3	Lectures, Practical training / laboratory, Class activity, Case study, Assignments / homework	Home Assignments, Quizzes, Oral Exam
15	Final exam				
16					

4. Teaching and Learning Methods

Lectures Practical training / laboratory Class activity Case study Assignments / homework

5. Student Assessment Methods

Assignments to assess knowledge and intellectual skills and proffesional and practical skills. Quiz to assess knowledge, intellectual and professional skills and practical skills. Mid-term exam to assess knowledge, intellectual skills and professional and practical skills. Final exam to assess knowledge, intellectual skills and professional and practical skills.

6. Assessment schedule

Assessment 1 on weeks 2, 5, 9, 11, 13 Assessment 2 Quizzes on weeks 4, 6, 10, 12 Assessment 3 Mid-term exam on week 8 Assessment 4 Oral Exam on week 14 Assessment 5 Final exam on week 15

7. Weighting of Assessments

Home assignments 10%

COURSE SPECIFICATIONS (2011-2012)

FACULTY OF ENGINEERING

Quizzes	10%
Mid-term examination	20%
Final-term examination	60%
Total	100%

8. List of References

8.1 Course Notes

• Handouts prepared by the instructors.

8.2 Essential Books (Text Books)

- D. W. Hart, Introduction to power electronics, John Wiley sons, 1997.
- M. H. Rashid, Power Electronics: Circuits, Devices, and Applications, 3rd Ed., Prentice Hall, 2004

8.3 Recommended Books

• P.C Sen, Principles of Electric Machines & Power Electronics, John Wiley sons, 1997.

8.4 Web sites

- Interactive Power Electronics Seminar by Swiss Federal Institute of Technology Zurich: <u>http://www.ipes.ethz.ch/ipes/e_index.html</u>
- Interactive Power Electronics online text by University of Technology Sydney, Australia
- http://services.eng.uts.edu.au/~venkat/pe_html/contents.htm
- Interactive Power Electronics Online Course by Power Designers, USA http://www.powerdesigners.com/InfoWeb/resources/pe_html/contents.htm

9. Facilities Required for Teaching and learning

Presentation board

Computer and data show

COURSE SPECIFICATIONS (2011-2012)

FACULTY OF ENGINEERING

Laboratory setups

Course coordinator:	Prof. Dr. Hamed Galal Hamed
Course instructors:	(1) Prof. Dr. Hamed Galal Hamed
	(2) Assoc. Prof. Hassan Abd El-aziz Mansour

Head of department:

Prof. Dr. Mousa Abd-Allah

Date: 8/12/2011